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Abstract

In the real world, a desirable Visual Question An-
swering model is expected to provide correct answers to
new questions and images in a continual setting (recog-
nized as CL-VQA). However, existing works formulate CL-
VQA from a vision-only or language-only perspective, and
straightforwardly apply the uni-modal continual learning
(CL) strategies to this multi-modal task, which is improper
and suboptimal. On the one hand, such a partial for-
mulation may result in limited evaluations. On the other
hand, neglecting the interactions between modalities will
lead to poor performance. To tackle these challenging is-
sues, we propose a comprehensive formulation for CL-VQA
from the perspective of multi-modal vision-language fusion.
Based on our formulation, we further propose MulTi-Modal
PRompt LearnIng with DecouPLing bEfore InTeraction
(TRIPLET), a novel approach that builds on a pre-trained
vision-language model and consists of decoupled prompts
and prompt interaction strategies to capture the complex
interactions between modalities. In particular, decoupled
prompts contain learnable parameters that are decoupled
w.r.t different aspects, and the prompt interaction strategies
are in charge of modeling interactions between inputs and
prompts. Additionally, we build two CL-VQA benchmarks
for a more comprehensive evaluation. Extensive experi-
ments demonstrate that our TRIPLET outperforms state-of-
the-art methods in both uni-modal and multi-modal contin-
ual settings for CL-VQA.

1. Introduction
Visual Question Answering (VQA) [2, 11, 37, 26] aims

to train a machine learning model capable of answering
questions given visual images as accurately as possible.
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Figure 1: Comparison between (a) existing CL-VQA meth-
ods [45, 29] and (b) our proposed TRIPLET model. Ex-
isting methods train all the parameters similar to typical
uni-modal CL-methods, while our TRIPLET model trains
parameters in prompts and classifiers, as well as explicitly
model the rich and complex modality-wise interactions.

In real-world dynamic environments [23], an ideal VQA
model is expected to generate answers for new questions,
new images, as well as new question-image simultaneously,
which is recognized as CL-VQA [20], i.e., learn a sequence
of VQA tasks with a single model without suffering from
catastrophic forgetting [28] on previously observed data.

Existing works [20, 29] formulate CL-VQA as a vision-
only or language-only continual learning setting, and
straightforwardly apply the uni-model continual learning
(CL) methods to this multi-modal task. However, model-
ing CL-VQA from such a uni-model view is suboptimal,
posing two challenging issues. First, the existing partial for-
mulation does not take the multi-modal nature of CL-VQA
into account, which leads to a limited view and improper
evaluations. Second, by straightforwardly employing the
uni-model CL methods, existing CL-VQA methods may ne-
glect the rich and complex interactions between modalities,
which leads to deteriorating performance.

To tackle the two challenging issues, we first propose a
comprehensive formulation for CL-VQA explicitly cover-
ing both multi-modal and uni-modal perspectives, so that
more extensive evaluations can be conducted in terms of



input distributions. Specifically, we carefully design three
scenarios according to different input distributions, i.e.,
Continual Vision Scenario, Continual Language Scenario,
and Continual Vision-Language Scenario, depending on in-
cremental visual images, textual questions, and both.

Secondly, based on our CL-VQA formulation with three
scenarios, we propose MulTi-Modal PRompt LearnIng
with DecouPLing bEfore InTeraction (TRIPLET), a multi-
modal prompt learning-based continual model for CL-
VQA. TRIPLET employs the widely adopted pre-trained
vision-language models with state-of-the-art VQA perfor-
mance as initialization, and consists of decoupled prompts
and prompt interaction strategies. To be specific, decou-
pled prompts contain a set of learnable parameters decou-
pled in three aspects, i.e., modality aspect, layer aspect, and
complementary aspect, which are attached to transformer
layers. Then the prompt interaction strategies are designed
to model the interactions between the input and prompts,
modality-wise prompts, as well as task-wise prompts. Fig. 1
illustrate a comparison between existing CL-VQA methods
and our proposed TRIPLET model.

In addition, we build two CL-VQA benchmarks on two
datasets (i.e., TDIUC [14] and VQA2.0 [9]), carrying out
extensive experiments on three scenarios. Our TRIPLET
model is able to consistently outperform baselines and SO-
TAs1 significantly across various settings. Besides, we con-
duct ablation studies to validate the effectiveness of dif-
ferent components in TRIPLET, demonstrating TRIPLET’s
superiority. In summary, our contributions are as follows:
• We propose a comprehensive formulation for CL-VQA

with multi-modal continual setting, enabling the contin-
ual evaluations of various approaches in three scenarios
based on different input distributions.

• We propose TRIPLET, a novel CL-VQA model contain-
ing decoupled prompts and prompt interaction strategies,
which is able to accurately generate answers in three con-
tinual scenarios without rehearsal buffer. To the best of
our knowledge, TRIPLET is the first multi-modal prompt
learning-based continual model for CL-VQA.

• We build up two CL-VQA benchmarks (i.e., CL-VQA2.0
and CL-TDIUC) for empirical evaluations of CL-VQA
including multi-modal continual setting. Our proposed
TRIPLET model achieves significant improvement over
state-of-the-art approaches in all three scenarios for both
two benchmarks. Extensive ablation studies further
demonstrate the effectiveness of different components in
TRIPLET.

2. Related Works

Visual Question Answering Visual Question Answer-
ing (VQA) aims to answer related questions given an im-

1We necessarily modify some SOTAs for better adaptation to CL-VQA.

age, which requires multi-modal reasoning ability. Existing
VQA methods [2, 11, 37, 26] and datasets [9, 14, 13, 18] are
usually designed for a stable environment, while the VQA
system being able to cope with dynamic environment (CL-
VQA) is rarely studied. In this paper, we focus on the CL-
VQA problem and propose the effective TRIPLET method.

Continual Learning Methods There exist numerous
continual learning methods which could be categorized into
three categories: (1) Regularization-based methods [23, 17,
43, 1] try to reduce catastrophic forgetting by regularizing
import parameters for previous tasks. (2) Rehearsal-based
methods [31, 33, 3, 42, 4, 35, 8, 41] use a buffer to store
representative samples or pseudo samples for previous task
to avoid catastrophic forgetting. In particular, [20] gener-
ates pseudo scene graphs for replay to mitigate forgetting
for CL-VQA. However, scene graphs are not easily avail-
able in real-world applications, making it less applicable.
(3) Architecture-based methods [15, 47, 25, 22, 44, 34, 42]
associate different parameters for different tasks to mitigate
forgetting. Recent works [38, 40, 39, 7, 30] adopt prompt
tuning technique, trying to assign each task with learn-
able parameters. However, these methods are designed for
uni-modal continual learning, failing to take multi-modal
fusion and reasoning characteristic of CL-VQA into ac-
count. In particular, S-Prompts [38] is suited for CL im-
age classification and not directly applicable to CL-VQA.
S-iPrompts in [38] handles only uni-modal inputs, while S-
liPrompts in [38], based on CLIP, calculates scores between
all possible labels and images, which is unsuitable for open-
ended CL-VQA involving lengthy textual question inputs
and thousands of answers in CL-VQA settings.

Continual Learning Benchmarks for VQA There exists
a few continual learning benchmarks for VQA. [10, 20, 29]
construct CL-VQA benchmarks from the uni-modal per-
spective. [45] builds CL-CrossVQA from the multi-domain
perspective and formulates each domain as a distribution,
while fails to characterize different distribution types and
corresponding real scenarios. In this paper, we provide a
comprehensive formulation from the multi-modal perspec-
tive for CL-VQA, and build two benchmarks with three sce-
narios, respectively.

3. Task Formulation
Continual Learning (CL) aims to capture the ever-

changing world and update models on a continuum of se-
quential coming data and tasks2 [40], where the data from
previous task is not available during training [49]. In
this paper, we focus on continual learning for the Visual
Question Answering (VQA) task that is to answer ques-
tions based on a given image, which is usually formu-
lated as a multi-label classification task involving thousands

2Also known as ‘session,’ ‘phase,’ or ‘stage.’
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Figure 2: Graphical explanations of: (a) the red part denotes
the ideal data distribution of task 1 ∼ task t, (b) Continual
Vision Scenario, (c) Continual Language Scenario, and (d)
Continual Vision Language Scenario. The blue part repre-
sents the distributions of the task t+ 1.

of classes [2, 11, 37, 26]. As time passed, new images,
new questions, and even new answers would appear, and
we have to update the VQA model accordingly. Follow-
ing [20, 29], we namely define this problem as CL-VQA.
Besides, we consider the more challenging CL-VQA setting
where the task identity is unknown for each sample during
inference, i.e., we do not know which task the samples be-
long to during test time.

We denote the sequential tasks of CL-VQA as D =
{D1, D2, ..., DT }, where Dt = {(xt

i, y
t
i)}nt

i=1 is the avail-
able data at t-th training task with nt instances. Unlike
most of the classical CL tasks where the input data x is
uni-modal [49], the VQA input data x = (v, q), containing
a visual scene v and a question q, is a multi-modal data.
Thus, the input distribution Pr(x) = Pr(v, q) depends on
the marginal distribution Pr(v) and Pr(q), and the interac-
tion between the two modalities. However, most of previ-
ous CL-VQA works [20, 29] only focus on partial settings
(i.e. only Pr(v) and Pr(q)) from uni-modal perspective,
therefore not providing all-inclusive evaluations for contin-
ual methods.

In this paper, we consider continual learning scenarios
systematically, explicitly from the uni-modal distribution as
well as their joint-distribution, formulating CL-VQA in a
more comprehensive way. Namely, we design three scenar-
ios in CL-VQA:
• Continual Vision Scenario (ConVS) considers the

changes of vision distribution Pr(v), while keeps
Pr(q|v) unchanged. ConVS addresses the scenarios
when new visual scenes occur while the possible ques-
tions remain the same.

• Continual Language Scenario (ConLS) considers the
changes of question distribution Pr(q), while keeps
Pr(v|q) unchanged. ConLS addresses the scenarios
when new questions arise on current available visual
scene.

• Continual Vision-Language Scenario (ConVLS) con-
siders the changes both vision and questions Pr(v, q).
ConVLS addresses the free-form changes of both modal-
ities and their interactions, i.e., new visual scene appear,
new questions arise, and Pr(v|q) or Pr(q|v) would also
change.

We further provide a graphical explanation of these scenar-
ios in Fig. 2. A desirable CL-VQA method is supposed to
perform well across all the aforementioned scenarios.

4. The Proposed Methods
To address the aforementioned three scenarios, it is im-

portant that we model both vision and language modalities
and their interaction at the same time. In this paper, we fol-
low the general Prompt Learning framework [12] and pro-
pose the novel MulTi-Modal PRompt LearnIng with De-
couPLing bEfore InTeraction (TRIPLET) method to ad-
dress the exemplar-free continual VQA problem.

4.1. Preliminary

Transformer-Based VQA Model A modern transformer
based VQA model usually contains three encoders, namely
visual encoder, textual encoder, and fusion encoder [6, 21,
36]. Formally, the answer of a question q given an image v
can be written as follows:

ŷ(v, q) = F
(
FT

([
VT(v); TT(q)

])
[0]

)
, (1)

where VT and TT are the pretrained visual transformer en-
coder and textual transformer encoder that encodes v and
q, respectively. FT(· · · )[0] fuses the multimodel features
together, and output the first fused feature into a classifier
F(·) to predict an answer a. Our proposed TRIPLET is
built upon this structure.

Prompt Learning Given an input sequence data x =
[x1, · · · ,xnx

] and a transformer encoder T, prompt learning
aims to find several “call-words” P = [P0, P1, · · · , Pnp ]
that when P is attached with x, the output feature would
meet certain requirements. In the following, we use the no-
tation T([P ;x]) to denote that we add prompts to x.

4.2. TRIPLET: Decouple Before Interact

Our proposed method, TRIPLET is illustrated in Fig. 3.
Built upon transformer-based VQA models, our goal is to
design a set of proper prompts and interaction strategies
that could solve CL-VQA problem. We will first introduce
our Prompt Decoupling Design separately in Sec. 4.2.1, and
then combine them to train together with our Prompt Inter-
action Strategies in Sec. 4.2.2, finally, overall training and
inference are introduced in Sec. 4.2.3.

4.2.1 Prompt Decoupling

Multi-Modal Decoupling Unlike those uni-modal
prompts proposed by previous work [39, 40], in this
paper, we disentangle prompts into multi-modal format to
fully address the modality-related knowledge from both
the pre-trained vision-language model and training data.
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Figure 3: The TRIPLET framework. Left: during training, the pre-trained encoders are frozen, and parameters in classifier,
decoupled prompts, task-specific keys and interaction matrix are learnable. At task t + 1, we train the decoupled prompts
(including three aspects, i.e., modality-wise, layer-wise and complementary). We further apply three interaction strategies
(within the light blue colored rectangle) to model modality-wise prompt interaction, task-wise prompt interaction, and in-
teraction between input features and prompt keys. Right: during inference, we first calculate multi-modal representations
with the query function, which are used to match the most similar multi-modal keys. Then decoupled E-Prompts paired with
matched keys, together with decoupled G-Prompts, are appended to the inputs (or features) for answer generation.

Basically, Eq. (1) would be modified with:

ŷ(v, q) = F
(
FT

([
P (f); VT([P (v);v]); TT([P (q), q])

])
[0]

)
,

(2)
where P (v),P (q), P (f) are the vision, question, and fusion
prompt, respectively.

Selective Deep Decoupling We then disentangle prompts
in a layer-wise format, and attaching it to selective lay-
ers. Rather than keeping attaching prompts to all the se-
lected multi-head attention (MHA) layers [39], in this pa-
per, we add prompts to some MHA layers in a replacing
schema, which is more memory-efficient. Given a trans-
former T containing K layers, T([P ;x]) = (LK ◦LK−1 · · ·◦
L0)([P ;x]) could be decomposed layer-by-layer:

h̄
P
k = αk · hP

k + (1− αk) · Pk,

[hCLS
k+1;h

P
k+1;h

x
k+1] = Lk([h

CLS
k ; h̄

P
k ;h

x
k ]),

(3)

where [hCLS
0 ; h̄

P
0 ;h

x
0 ] = [CLS, P0,x] are the raw inputs, and

the output of LK is regarded as model output. Moreover,
αk ∈ {0, 1} is a predefined switch that controls whether us-
ing the output prompt feature hP

k or the k-th layer-specific
prompt Pk as input.

Complementary Decoupling Following the complemen-
tary design principle [39], each prompt is further split into
two parts: a General Prompt (G-Prompt) to extract task-
invariant knowledge, and an Expert Prompt (E-Prompt) to

extract task-specific knowledge. For example, the visual
prompt P (v) = {G(v); {E(v)}} is composed of G-prompt
G(v) shared for all tasks and E-prompt E(v)

t specialized for
the t-th task . When the t-th task comes, we train the prompt
P

(m)
t = {G(m);E

(m)
t } where m = v, q, f .

In our implementation, we combine all the three afore-
mentioned decoupling designs. That is, we have three sets
of prompts for three modalities, where each set of prompts
contains layer-wise deep-prompts and each layer-wise deep
prompt contains a G-prompt and a set of E-prompts. In
summary, all the learnable prompts include:

P (m) =
{
G

(m)
k ∈ R

LG×D
}⋃{

E
(m)
t,k ∈ R

LE×D
}
,

m = v, q, f,
(4)

with subscripts t for tasks, k for the k-th MHA layers, LG

/LE for G / E-Prompt’s length, D for embedding dimension.

4.2.2 Prompt Interaction

With the proposed decoupled prompts, then we need inter-
action strategies to train them all together. We first have
Query-and-Match Strategy to match between input features
and related task-specific prompts. We further introduce
Modality-Interaction Strategy and Task-Interaction Strat-
egy to promote interactions between prompts. The former



one would encourage mutual propagation between differ-
ent modalities of prompts, thus strength the model perfor-
mance [16]. And the latter one would make prompts less
affected by sequential tasks, thus reduces catastrophic for-
getting.

Query-and-Match Strategy As our decoupled prompts
include task-specific prompts, we need accurate task-
specific keys to link input features to these prompts. We
extend the “Query-and-Match” strategy in [39, 40]’s scope
to the multi-modal domain to train the corresponding task-
specific key u

(m)
t via a query matching loss Lqm, making

u
(m)
t closer to samples from the task t than others. Firstly,

given (v, q), the queries are obtained using the frozen trans-
formers (see Eq. (1)) as

h(v) = VT(v), h(q) = TT(q), h(f) = FT([h(v),h(q)]),

Q(v) = h(v)[0], Q(q) = h(q)[0], Q(f) = h(f)[0],

where h[0] means selecting the first element from the vec-
tor, i.e., selecting hCLS as shown in Eq. (3). Using cosine
similarity γ, the query matching loss Lqm is:

Lqm(Dt) = −
∑

(v,q)∈Dt

∑
m∈{v,q,f}

γ
(
u

(m)
t , Q(m)

)
. (5)

Modality-Interaction Strategy We present the Prompt
Modality-Interaction that acts as a bridge between different
modalities of prompts. We introduce the following interac-
tion mapping:

P̂
(f)
t,k = W

(v)
t,k⊗P

(v)
k,t +W

(q)
t,k⊗P

(q)
t,k +W

(v,q)
t,k ⊗

(
P

(v)
t,k ⊙ P

(q)
t,k

)
,

(6)
where ⊙ is the element-wise multiplication, ⊗ is the ma-
trix multiplication, and W (·) are the learnable interaction
matrixes. In this paper, we constrain the rank of these inter-
action matrixes with W = U ⊗V ⊤, where U ,V ∈ RD×d

are two low-rank matrixes. We use the following Lmod to
address this modality-interaction:

Lmod(Dt) = −
∑
k

γ
(
P̂

(f)
t,k , P

(f)
t,k

)
. (7)

Task-Interaction Strategy As our prompt learning-
based method is built upon the frozen pre-trained model,
the representations for different tasks share the same se-
mantic space. Therefore, prompts share the invariant se-
mantic space between different tasks to align with pre-
trained model, which leads to invariant prompt modalities-
interaction structure between different tasks. To this end,
we introduce the task-interaction constraint Ltask to regu-
late the invariant structure as follows:

Ltask(Dt) =
∑
m,t,k

(∥∥∥W (m)
t,k −

〈
W

(m)
t,k

〉
t−1

∥∥∥2

F

)
, (8)

where ∥ · ∥F denotes the Frobenius norm, and ⟨W (m)
k ⟩t−1 is

the cached copy of W (m)
k when training task (t− 1).

4.2.3 Training and Inference

Training When a new task t comes, we instantiate F as
a classifier gt (a fully connected layer), and allocate the
task-specific querying keys (u

(v)
t ,u

(q)
t ,u

(f)
t ) and prompts

(E
(v)
t , E

(q)
t , E

(f)
t ). Then, the decoupled prompts, interac-

tion matrix, classifier, querying keys as jointly trained with:

L(Dt) =
∑

(v,q,y)∈Dt

ℓCE(ŷt(v, q), y)

+ λ1Lqm(Dt) + λ2Lmod(Dt) + λ3Ltask(Dt),

(9)

where ŷ(v, q) is the network prediction (see Eq. (2)), y is
the target answer, ℓCE(ŷ, y) is the cross entropy loss, and
λ(·) are the hyperparameters.

Inference During inference, given an input sam-
ple (v, q), we choose the best matched task index
argmaxt(m) γ

(
u
(m)

t(m)
, Q(m)

)
. Then the corresponding prompts

P
(m)

t(m),·
are selected, and fed into the corresponding trans-

former. Finally, the corresponding classifiers gt(·) are
selected to predict an answer.

The full picture of TRIPLET at training and inference is
described in the Appendix.

5. Experiments
We evaluate our proposed TRIPLET on the three afore-

mentioned scenarios on two well-known VQA datasets,
i.e., TDIUC [14] and VQA2.0 [9]. We carefully compare
TRIPLET with state-of-the-art (SOTA) methods of different
categories under the same experiment settings. Moreover,
we conduct extensive ablation studies to provide a better
understanding of our proposed TRIPLET method.

5.1. Evaluation Benchmarks

Given the two commonly adopted VQA datasets,
TDIUC [14] and VQA2.0 [9], we build continual learn-
ing benchmarks (denoted as CL-TDIUC and CL-VQA2.0)
by dividing their images and questions into several disjoint
hyper-categories, and then construct the benchmarks ac-
cording to scenarios. For the Continual Vision Scenario
(ConVS) and Continual Language Scenario (ConLS) sce-
narios, we split datasets according to the hyper-categories
on images and questions, respectively [24, 5]. For the
Continual Vision-Language Scenario (ConVLS), we collect
questions of different types from each hyper-category of im-
ages to form 5 tasks, such that both image hyper-category
and question type are different between tasks.

To note, we follow the original train-validation split
while building these two benchmarks to avoid data breach



Table 1: Results for the CL-VQA2.0 and CL-TDIUC built upon ALBEF [21]. Bold: best exemplar-free CL-VQA results,
Underline: second best exemplar-free CL-VQA results, †: best rehearsal-based CL-VQA results, ‡: rehearsal-based results
which outperform the best exemplar-free results, Upper-bound: supervised fine-tuning on the i.i.d. data of each task, ⋄:
enhanced methods as discussed in Sec. 5.2, A: average accuracy, F: forgetting.

Method
Buffer CL-VQA2.0 CL-TDIUC

Size ConLS ConVS ConVLS ConLS ConVS ConVLS
A(↑) F(↓) A(↑) F(↓) A(↑) F(↓) A(↑) F(↓) A(↑) F(↓) A(↑) F(↓)

DER [42]
2000

48.56 19.37 51.15 6.48 56.43 5.52 62.83 8.93 74.43 6.98 70.74 14.70
WA [46] 50.09 18.04 54.74 2.57 55.28 6.74 66.02 6.98 75.47 4.88 75.00 8.18

iCaRL [31, 27] 48.71 19.55 53.76 1.12 54.96 7.08 63.56 8.71 74.53 6.37 73.49 10.26

DER [42]
5000

53.39 13.35† 52.34 4.61 58.78† 3.86‡ 63.71 7.95 75.18 6.96 71.63 13.42
WA [46] 53.91† 13.51 55.89† 1.95 58.75 3.96‡ 69.23† 4.49† 75.84† 4.39† 77.51† 4.68

iCaRL [31, 27] 53.42 14.09 54.72 0.59† 58.58 4.06 67.94 5.46 75.78 4.75 74.98 7.41

LwF [23]

0

37.49 26.08 54.90 2.80 36.87 24.03 39.25 30.50 72.19 5.50 73.71 8.11
EWC [17] 37.21 34.13 54.54 3.69 33.78 27.22 14.61 66.37 71.27 8.26 73.65 8.28
L2P⋄ [40] 41.38 25.80 41.55 3.86 32.43 27.25 33.95 29.21 75.51 0.60 69.18 15.65

DualPrompt⋄ [39] 44.26 24.16 53.56 1.68 41.30 21.37 44.50 14.70 77.38 3.93 81.36 2.31
S-Prompts⋄ [38] 45.50 8.00 44.18 0.78 46.36 8.65 59.70 7.32 69.89 4.35 72.77 2.25

Ours 56.76 9.66 59.41 0.12 60.53 4.08 70.80 1.64 80.47 0.15 83.06 0.54

Upper-bound - 64.53 - 59.62 - 64.08 - 74.60 - 80.57 - 83.33 -

when we use pre-trained vision-language models3. Detailed
analysis for the data splits is provided in the appendix.

5.2. Experimental Details

Backbones We select two public pre-trained models as
our backbones, namely ALBEF [21] and FLAVA [36].
These two models differ in fusion encoder, where ALBEF
uses cross-attention between two modalities, while FLAVA
uses self-attention.

We mainly analyze results on ALBEF in the main paper
and provide additional results on FLAVA in the appendix.

Evaluation Metrics Following the common evaluation
protocols [40, 39], we use two metrics, namely Average
accuracy (higher is better) and Forgetting (lower is bet-
ter). We use St,τ to represent the accuracy on the τ -th
task after training the model on the t-th task. Then, Av-
erage accuracy is defined as

∑
t≤T

∑
τ≤t αt,τSt,τ where

αt,τ is a weighted factor to balance the number of test-
ing instances in different tasks, Forgetting is defined as

1
T−1

∑
τ<T maxt≥τ (St,τ − ST,τ ).

Comparing Methods Based on [29] and our prelimi-
nary experiments, vanilla VQA models fail to tackle CL-
VQA tasks, we thus focus on those SOTA continual learn-
ing approaches from different categories. We compare
our TRIPLET with non-prompting rehearsal-based meth-
ods: DER [42], WA [46], iCaRL [31]; regularization-based
methods: LwF [23], EWC [17]; and the newly proposed
prompt-based methods L2P [40], DualPrompt [39] and S-

3These models are usually trained with images from COCO [24] and
Visual Genome [18].

Prompts [38]. Upper-bound is the supervised fine-tuning
on the i.i.d. data of each task.

To compare fairly, we use the same backbone for all
these approaches, and we train with the backbone for
non-prompting methods while freezing the backbone for
prompt-based methods. All these approaches and our
TRIPLET use the same classifier head. For rehearsal-based
methods iCaRL [31], DER [42] and WA [46], we further
test two sizes of replay buffer, i.e., 2000 and 5000, which
show high performance in [49]. For non-prompting meth-
ods, we use the representation of “CLS” token for classifica-
tion. For prompt-based methods L2P [40], DualPrompt [39]
and S-Prompts [38]4, we symmetrically add textual key-
prompt pairs to enhance model performance, which we de-
noted as L2P⋄, DualPrompt⋄ and S-Prompts⋄. Experimen-
tal results for original structures of L2P and DualPrompt are
in the appendix.

Training Details For those non-prompting methods, we
follow the original paper [21, 36] to set up the opti-
mizer. For those prompt-based methods, we follow Dual-
Prompt [39] to set up the optimizer as adamW with cosine
scheduler and 4e−4 start learning rate. For all approaches,
we set the training batch size to 16 for CL-VQA2.0 and 64
for CL-TDIUC. For L2P⋄ [40], we use the same hyperpa-
rameters as [39] does. For DualPrompt⋄ [39], we add deep-
prompts to the [0-2] MHA layers for G-prompts and [2-5]
MHA layers for E-prompts, and set LG = 5, LE = 20 (See
Eq. (4)). For TRIPLET, we keep the same hyperparame-
ter with DualPrompt⋄’s for Multi-Modal Prompt. After hy-
perparameter searching, we set d = 20, λ1 = 0.1, λ2 =

4We adapted S-iPrompts for CL-VQA.
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Figure 4: Tracking the accuracy of the first task on Contin-
ual Language Scenario (ConLS).

0.2, λ3 = 0.05 for all benchmarks with ALBEF, and set
d = 10, λ1 = 0.1, λ2 = 0.1, λ3 = 0.05 for FLAVA.

Overheads For each task, our proposed TRIPLET
method trains a set of additional key-prompt pairs, as well
as an interaction constraint matrix, which leads to the 0.55%
and 0.44% extra memory cost based on ALBEF [21] and
FLAVA [36], respectively. Other SOTA prompt learning-
based methods L2P⋄ and DualPrompt⋄ take 0.47% and
0.31% extra memory based on ALBEF, and 0.41% and
0.27% based on FLAVA, respectively. We also compare
our methods with DualPrompt⋄ with the same 0.55% extra
memory on ALBEF as shown in Sec. 5.4.

5.3. Main Results

We summarize the main results in Tbl. 1 for the continual
scenarios on CL-VQA 2.0 and CL-TDIUC.

Overall Performance The results indicate that the pro-
posed TRIPLET significantly outperforms baseline meth-
ods across various settings, including those models using
extra buffer and the two recently proposed prompt-based
methods L2P⋄ and DualPrompt⋄, considering average ac-
curacy and forgetting. We also find baseline methods’ per-
formances differ across various scenarios, demonstrating
the importance of our proposed comprehensive formulation.
Methods generally achieve higher average accuracy in CL-
TDIUC than CL-VQA2.0, which is consistent with the i.i.d.
accuracy in original splits [9, 14]. However, there is no ob-
vious partial order relationship for the forgetting metric on
the two splits, as forgetting is also related to the task-wise
differences inside each scenario.

We also trace the first task’s accuracy during different
training stages (denoted as task ID) in Fig. 4, in ConLS set-
tings. We could find that our method shows the best overall
performance. Besides, as we formulate CL-VQA w.r.t. in-
puts, there exists some answer overlap between tasks, which
would help the model recall previous knowledge and result
in the accuracy ascent for all methods after the final task.

Findings Moreover, we observe some interesting find-
ings for pre-trained vision-language model-based continual
learning. In Continual Language Scenarios, rehearsal-based

Table 2: Ablation study for position of prompts on ConLS
VQA2.0. E means E-Prompts and G means G-Prompts, the
numbers in [·] means layers to attach prompts.

Prompt Position Avg. Acc (↑) Forgetting (↓)

E: [2,3,4], G: [0,1,2] 55.75 10.72
E: [2,3,4,5], G: [0,1,2] 56.32 10.37

E: [0,1,2,3,4,5], G: [0,1,2,3,4,5] 54.59 12.32

Table 3: Ablation Study of Modality (M) Interaction Strat-
egy and Task (T) Interaction Strategy for three scenarios on
two benchmarks. Bold: best results.

Scenario M & T CL-TDIUC CL-VQA2.0
Interaction Avg. Acc (↑) FGT (↓) Avg. Acc (↑) FGT (↓)

ConLS ✗ 70.26 2.05 56.32 10.37
✓ 70.80 1.64 56.76 9.66

ConVS ✗ 80.27 0.40 59.27 1.02
✓ 80.47 0.15 59.41 0.12

ConVLS ✗ 82.94 0.59 60.05 4.43
✓ 83.06 0.54 60.53 4.08

methods (DER, WA, and iCaRL) achieve much higher per-
formance than exemplar-free methods (EWC and LwF).
However, in Continual Vision Scenarios, they achieve com-
parable results, and this observation is consistent with the
results in [29]. A possible explanation is that with pre-
trained knowledge, Continual Language Scenarios, where
tasks have significant different answer distributions from
each other, is more difficult than Continual Vision Scenar-
ios, where tasks have similar answer distributions. Another
phenomenon is that the larger size of the buffer offers lit-
tle help for performance. This is because VQA datasets
usually contain high-dimensional and long-tailed answer la-
bels, and it is difficult to select representative replay exam-
ples with the existing strategies.

5.4. Ablation Study

We conduct first four ablation studies based on the AL-
BEF backbone for a more in-depth understanding of the
proposed TRIPLET method.

The Effectiveness of Selective Deep Decoupling We
learn from [39]’s empirical results that the prompts work
better in the first six layers. In ALBEF, the visual encoder
has 12 layers, and fusion and textual encoders have 6 lay-
ers. Thus, we conduct an ablation study on the ConLS CL-
VQA2.0 to search best layers. As shown in Tbl. 2, we find
the best performance to add E-Prompt from layers 2 to 5 and
G-Prompt from layers 0 to 2. The highest performance in
the second row demonstrates the effectiveness of Selective
Deep Decoupling.

The Effectiveness of Prompt Interactions As shown in
Tbl. 3, our performance stably improves with prompt inter-
action strategies in all scenarios. We also conduct additional
experiments for different components of prompt modality
and task interaction strategies in Tbl. 4. Improved perfor-
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Table 4: Ablation Study for Exploration of Modality-
wise and Task-wise Prompt Interactions. MI: Modality-
Interaction, TI on G/E-Prompt: Task-Interaction (See
Eq. (8)) for G/E-Prompt.

MI TI on G-Prompt TI on E-Prompt Avg. Acc (↑) Forgetting (↓)

56.32 10.37
✓ 56.63 9.87
✓ ✓ 56.30 10.02
✓ ✓ 56.53 9.80
✓ ✓ ✓ 56.76 9.66
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Figure 6: Visualization of decoupled prompts w/o and w/
Modality-Interaction(MI) by t-SNE.
mance between the first two rows shows that mutual prop-
agation between different modalities helps the alignment of
decoupled prompts in modality aspect. The results in the
last three rows show that it is important to keep the invari-
ant prompt modality-interaction structure between different
tasks for both G and E-prompts in selective deep layers.

Exploration of Modality-Interaction Matrix We ex-
plore the dimension d on ConVS CL-VQA2.0 to explore the
best hyperparameter for the proposed Modality-Interaction
Strategy (See Sec. 4.2.2) as shown in Fig. 5. With the in-
creasing dimension d, the performance first increases and
then decreases with the peak performance at dimension
d = 20. Interestingly, the best dimension d remains sta-
ble across different scenarios. Compared with dimension
d, another two hyperparameters λ2 and λ3 have less in-
fluence on the model performance. We set λ2 = 0.2 and
λ3 = 0.05 across different scenarios. As shown in Figure 6,
we also visualize decoupled prompts for 5 tasks after the
final training stage, w/o and w/ Modality-Interaction(MI)
by t-SNE, further verifying that prompts within different
modalities become more clustered. The above two ablation
studies demonstrate the effectiveness of explicitly modeling
the complex multi-modal interactions.

Exploration of Extra Memory We set LG/LE = 20/35
for visual and textual prompts in DualPrompt⋄ [39] to make
a fair comparison with TRIPLET in extra memory. We
choose to conduct experiments on ConVLS TDIUC when
DualPrompt⋄ achieves its best time (See Tbl. 1). From

Table 5: Results for exploration for extra memory.
Method Extra Memory Avg. Acc (↑) FGT (↓)

DualPrompt⋄ [39] 0.31% 81.36 2.31
DualPrompt⋄ [39] 0.55% 80.41 3.68

Ours 0.55% 83.06 0.54

Table 6: Results for Continual Language Scenario built
upon FLAVA [36]. For details about the meaning of the
fonts and notations, see Tbl. 1.

Method Buffer Average Acc
Size CL-VQA2.0 CL-TDIUC

DER [42]
5000

41.66† 44.91
WA [46] 33.02 66.27‡

iCaRL [31, 27] 34.14 64.59

L2P⋄ [40]
0

36.98 27.21
DualPrompt⋄ [39] 23.65 25.99

Ours 44.00 64.86

Upper-bound - 64.14 75.08

Tbl. 5, we find DualPrompt⋄ performs worse with more ex-
tra memory, as the previous chosen hyperparameters have
the best performance reported in [39].

Exploration of Different Backbones In order to explore
the impact of different backbones and demonstrate the sta-
bility of our proposed TRIPLET method, we conduct ex-
tensive experiments based on FLAVA [36]. We select the
baselines with the top performance across different settings,
namely WA, iCaRL, and DER with 5000 buffer size and
DualPrompt⋄. We also select L2P⋄ as it belongs to the
prompt learning-based category as ours. As shown in Tbl. 6,
our method consistently outperforms exemplar-free base-
lines, and achieves comparable results with rehearsal-based
baselines. Generally, ALBEF-based results are higher than
FLAVA-based results, which may be partially due to differ-
ent fusion structures, thus being consistent with [45].

6. Conclusions
In this paper, we are the first to propose a comprehensive

formulation for CL-VQA to conduct extensive multimodal
continual evaluations. Based on our formulation, we further
propose TRIPLET, the first multimodal prompt learning-
based continual model for CL-VQA, which achieves state-
of-the-art results across various settings in the experiments.
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Appendix of Decouple Before Interact:
Multi-Modal Prompt Learning for Continual Visual Question Answering

A. More Experimental Details
A.1. Experimental Results on CLOVE [20]

To demonstrate the effectiveness of our proposed TRIPLET, we conduct experiments on the public benchmark
CLOVE [20] and report average accuracy in the table bellow. We select the baselines with top performance and report
previous SOTA [20], which needs extra scene graphs for training. Our TRIPLET outperforms previous SOTA, as well as
baselines with the same backbone, substantiating the effectiveness of our TRIPLET.

Table 7: DER, WA and iCaRL are rehearsal-based methods with 5000 buffer size.
Methods DER WA iCaRL L2P⋄ DualPrompt⋄ TRIPLET Previous SOTA

CLOVE-scene 35.08 36.48 37.24 32.54 43.18 47.73 36.91
CLOVE-function 31.95 38.56 37.22 22.47 49.12 51.01 45.97

A.2. Exploration of the Task Orders on Forgetting Issues

We randomly sample 4 task orders from all possible permutations on ConLS CL-VQA2.0 for evaluation. We select
the baselines with top performance and report the results (Average±Standard Deviation) over these four task orders in the
table bellow. The results illustrate that task orders do impact performance and some orders may lead to larger forgetting,
while TRIPLET outperforms the baselines and exhibits the lowest standard deviation, which demonstrates its robustness to
variations in task orders.

Table 8: DER, WA and iCaRL are rehearsal-based methods with 5000 buffer size.
Methods DER WA iCaRL L2P⋄ DualPrompt⋄ TRIPLET

Average Accuracy (↑) 54.77±2.68 54.56±3.61 55.72±3.80 35.19±7.98 44.31±8.29 57.37±1.37
Forgetting (↓) 9.84±3.72 10.11±3.77 9.91±3.91 25.11±6.07 17.11±10.58 6.82±2.79

A.3. Implementation of Baseline Methods

We extend Class Incremental Learning (CIL) framework [48]’s scope to the multi-modal domain for the implementation
of None-prompt learning baselines (i.e., iCaRL [31], DER [42], WA [46], EWC [17] and LwF [11]). Moreover, we use
the same backbone as ours (i.e., ALBEF [21] and FLAVA [36]). For rehearsal-based methods (i.e., iCaRL, DER, and WA),
we also enhance the rehearsal selection strategies. To be specific, we select the examples closest to the center using fusion
features. When the total number of answer labels is larger than the buffer size, we randomly select as many answer labels
as the buffer size to store examples. As for the prompt learning-based method (i.e., L2P [40] and DualPrompt [39]), we
symmetrically add textual key-prompt pairs to enhance model performance for CL-VQA, which we denoted as L2P⋄ and
DualPrompt⋄. Detailed structures of L2P⋄, DualPrompt⋄ and our proposed TRIPLET are shown in Fig. 7.5

A.4. Exploration of Backbone FLAVA

To explore the impact of different backbones and demonstrate the stability of our proposed TRIPLET methods, we addi-
tionally conduct experiments based on FLAVA [36]. As we have introduced in the main paper, we select the baselines with
the top performance across different settings, namely WA, iCaRL, and DER with 5000 buffer size and DualPrompt⋄. We
also select L2P⋄ as it belongs to the prompt learning-based category as ours. We use two evaluation metrics (i.e., Average
Accuracy and Forgetting), and regard Average Accuracy as our main evaluation metric as it reflects both the greater learning
capacity and less catastrophic forgetting [39].
Performance and Findings As the results are shown in Table 9 and Table 10, our method consistently outperforms exemplar-
free baselines and achieves comparable results with rehearsal-based baselines. We also find baselines and our method have

5Prompt learning-based methods are built upon the public repository https://github.com/JH-LEE-KR/l2p-pytorch
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Table 9: Results for the CL-VQA2.0 built upon FLAVA [36]. Bold: best exemplar-free CL-VQA results, Underline: second
best exemplar-free CL-VQA results, †: best rehearsal-based CL-VQA results, ‡: rehearsal-based results which outperform
the best exemplar-free results, Upper-bound: supervised fine-tuning on the i.i.d. data of each task, ⋄: enhanced methods as
discussed in Sec. 5.2, Avg. Acc: average accuracy, FGT: forgetting., Grey Color: results with backbone ALBEF.

Method Buffer ConLS ConVS ConVLS
Size Avg. Acc (↑) FGT (↓) Avg. Acc (↑) FGT (↓) Avg. Acc (↑) FGT (↓)

DER [42]
5000

41.66† / 53.39 22.86‡ / 13.35 31.77† / 52.34 6.68 / 4.61 28.66† / 58.78 14.28 / 3.86
WA [46] 33.02 / 53.91 32.77 / 13.51 31.11 / 55.89 5.51 / 1.95 24.96 / 58.75 11.02 / 3.96

iCaRL [31, 27] 34.14 / 53.42 32.65 / 14.09 29.42 / 54.72 4.03† / 0.59 23.11 / 58.58 9.56† / 4.06

L2P⋄ [40]
0

36.98 / 41.38 37.02 / 25.80 34.99 / 41.55 2.87 / 3.86 25.84 / 32.43 41.58 / 27.25
DualPrompt⋄ [39] 23.65 / 44.26 45.57 / 24.16 37.66 / 56.56 19.86 / 1.68 20.32 / 41.30 43.17 / 21.37

Ours 44.00 / 56.76 27.51 / 9.66 42.42 / 59.41 0.12 / 0.12 55.05 / 60.53 7.02 / 4.08

Upper-bound - 64.14 / 64.53 - 52.34 / 59.62 - 61.68 / 64.08 -

Table 10: Results for the CL-TDIUC built upon FLAVA [36]. Bold: best exemplar-free CL-VQA results, Underline: second
best exemplar-free CL-VQA results, †: best rehearsal-based CL-VQA results, ‡: rehearsal-based results which outperform
the best exemplar-free results, Upper-bound: supervised fine-tuning on the i.i.d. data of each task, ⋄: enhanced methods as
discussed in Sec. 5.2, Avg. Acc: average accuracy, FGT: forgetting, Grey Color: results with backbone ALBEF.

Method Buffer ConLS ConVS ConVLS
Size Avg. Acc (↑) FGT (↓) Avg. Acc (↑) FGT (↓) Avg. Acc (↑) FGT (↓)

DER [42]
5000

44.91 / 63.71 19.06 / 7.95 61.20† / 75.18 10.27† / 6.96 49.53 / 71.63 22.96 / 13.42
WA [46] 66.27‡ / 69.23 11.67† / 4.49 56.98 / 75.84 13.55 / 4.39 54.97† / 77.51 20.26† / 4.68

iCaRL [31, 27] 64.59 / 67.94 11.72 / 5.46 56.55 / 75.78 13.52 / 4.75 49.17 / 74.98 23.33 / 7.41

L2P⋄ [40]
0

27.21 / 33.95 50.99 / 29.21 52.80 / 75.51 3.29 / 0.60 67.44 / 69.18 12.34 / 16.65
DualPrompt⋄ [39] 25.98 / 44.50 47.35 / 14.70 69.95 / 77.38 15.12 / 3.93 65.31 / 81.36 23.50 / 2.31

Ours 64.86 / 70.80 10.82 / 1.64 75.24 / 80.47 0.12 / 0.15 70.01 / 83.06 1.65 / 0.54

Upper-bound - 75.08 / 74.60 - 80.92 / 80.57 - 82.56 / 83.33 -

different performances with different backbones (i.e., FLAVA and ALBEF). Firstly, all the methods (including our proposed
TRIPLET) achieve better performances based on ALBEF than FLAVA. Secondly, the performances of baselines vary across
different backbones. For example, based on FLAVA, L2P⋄ generally achieves higher performance than DualPrompt⋄, while
DualPrompt⋄ generally achieves higher performance when based on ALBEF. These observations may be partially due to their
different fusion structures. However, our proposed TRIPLET consistently outperforms baselines across various backbones,
demonstrating our effectiveness.



A.5. Experimental Details

We list our experimental details based on ALBEF in Table 11. We set different learning rates for two types of methods, as
none-prompt learning methods train with the backbone, while prompt learning-based methods freeze the backbone. There-
fore, we follow [21] to set a smaller learning rate for the former ones. For training epochs, we train all the models until they
converge.

Table 11: Training details based on ALBEF for baselines and our proposed TRIPLET.

Method Batch Size Learning Rate Training Epoch Other Hyper Parameters Resource

EWC

16 for CL-VQA2.0
64 for CL-TDIUC

8e-5
120 for the first task
80 for the other tasks

λ = 1000

8×A100 GPUs 80G
LwF λ = 1

iCaRL -
DER -
WA -

L2P⋄

16 for CL-VQA2.0
64 for CL-TDIUC

4e-4 50

{N = 30, topk = 5}
4×A100 GPUs 80G for CL-VQA2.0
8×A100 GPUs 80G for CL-TDIUC

DualPrompt⋄ {LG = 5, LE = 20}

Ours
{LG = 5, LE = 20, d = 20,

λ1 = 0.1, λ2 = 0.2, λ3 = 0.05}

B. Details of the Benchmarks

B.1. How to Split Original Datasets?

In this section, we discuss in detail how to generate the continual vision scenario (ConVS), continual language scenario
(ConLS), and continual vision-language scenario (ConVLS) in CL-VQA2.0 and CL-TDIUC, respectively, according to the
definition in the main paper. We first introduce the common ideas for designing these scenarios, and then introduce designing
details for two benchmarks which are personalized according to the various datasets’ annotations. For ConVS, we explicitly
consider the changes in vision distribution based on visual object categories contained in images [29], and different tasks
include images containing different object categories. For ConLS, we explicitly consider the changes in question distribution
based on question types, and different tasks include questions belonging to different question types. For ConVLS, we
explicitly consider the changes in both vision and question distribution based on visual object categories contained in images
and question types. In different tasks, images contain different object categories and question types also change.

CL-TDIUC CL-TDIUC benchmark is built upon TDIUC [14], which contains images from Visual Genome [18] and
MSCOCO [24], and questions generated from both image annotations and human annotators. Besides question-answer
pairs, annotations include question types (e.g., object presence and scene recognition.), and object categories from Visual
Genome [18] and MSCOCO [24].
• Continual Vision Scenario (ConVS). According to the object category annotations provided by MSCOCO and Visual

Genome, we divide images into five hyper-categories according to the object categories they contain: indoor activity,
outdoor activity, animal, food, and traffic. We list 10 representative object categories in each hyper-category as shown in
Table 12, and an example image in each hyper-category as shown in Fig. 8. After splitting images into five tasks, we collect
corresponding questions and answers to form sequential VQA tasks.

• Continual Language Scenario (ConLS). As TDIUC has annotations about question types, we select five question types,
i.e., Query-Color, Scene-Recognition, Object-Recognition, Counting, and Positional-Reasoning, to make the total number
of tasks consistent with that of ConVS. We list 2 representative questions for each question type as shown in Table 13.
After splitting questions into five tasks, we collect corresponding images and answers to form sequential VQA tasks.

• Continual Vision-Language Scenario (ConVLS). As we have categorized images into five hyper-categories as discussed
in ConVS, we then sequentially select corresponding questions of certain question types. For example, we select images
in indoor activity, and select corresponding questions of certain question types (i.e., sentiment-understanding, attribute,
positional-reasoning, utility-affordance, sport-recognition and object-recognition) to form task 1. Detailed information
about selected images and question types for each task is shown in Table 14.

Detailed statistics for CL-TDIUC are listed in Table 15. We then draw the word cloud figures for the top-20 answers based
on the answer frequency as shown in Fig. 9, 10, and 11. We can find ConLS and ConVLS have rather different answer
distributions across different tasks, while ConVS have much more similar answer distributions across different tasks. This is



Table 12: Representative object categories in each hyper-category for ConVS in CL-TDIUC.

Task Representative Object Categories

Indoor Activity backpack, umbrella, laptop, bookshelf, table, couch, computer monitor, shelf, bed, cell phone
Food kitchen, bottle, fork, knife, bowl, food, sandwich, carrot, hot dog, pizza

Outdoor Activity sports, skis, snowboard, sports ball, kite, baseball, skateboard, surfboard, tennis, racket
Traffic traffic light, fire hydrant, stop sign, parking meter, bench, road, sidewalk, street, vehicle, motorcycle
Animal animal, bird, cat, dog, horse, sheep, cow, elephant, bear, zebra

reasonable as tasks in ConVS usually share the same question types (e.g., counting), though some answers vary according to
the objects in the images (e.g., dining table in Task 2 and baseball in Task 3.)

CL-VQA2.0 CL-VQA2.0 benchmark is built upon VQA2.0 [9], which is the most wildly used VQA dataset. VQA2.0
contains images from MSCOCO [24]. Besides question-answer pairs, annotations include coarse-grained object categories
from MSCOCO [24].
• Continual Vision Scenario (ConVS) Similar to [29], we organize 80 object categories into five groups as shown in

Table 16. Images with objects from multiple groups are discarded to create clean task splits. After splitting images into
five tasks, we collect corresponding questions and answers to form sequential VQA tasks.

• Continual Language Scenario (ConLS) As there are no clear annotations for question types, we manually divide the
question types into five categories, namely Counting, Query-Color, Action, Subcategory, and Query-Scene. In particular,
Counting, Query-Color, and Subcategory are derived from [29], and then we cluster the rest question embedding from
Sentence-BERT [32], forming the following two question types. We list 2 representative questions for each question type
as shown in Table 17. After splitting questions into five tasks, we collect corresponding images and answers to form
sequential VQA tasks.

• Continual Vision-Language Scenario (ConVLS). As we have categorized images into five hyper-categories as discussed
in ConVS, we then sequentially select corresponding questions of certain question types. For example, we select images
from Group 1 and select corresponding questions of certain question types (i.e., query-color) to form task 1.

Detailed statistics for CL-VQA2.0 are listed in Table 18. Also, we draw the word cloud figures for the top-20 answers based
on the answer frequency as shown in Fig. 12, 13, and 14.

B.2. What Factors may Matter the Difficulty of Different Scenarios?

From experimental results shown in Table 9 and Table 10, we find methods have different performance across various
scenarios. On the one hand, it is because of the effectiveness of the methods, while on the other hand, it may due to different
difficulties for different scenarios. In this section, we use divergence and similarity to analyze the difficulty of different
scenarios.

As there exist partial none-overlapping answers for different tasks, we use skew divergence [19] between Task i and Task
j in the same scenario to measure the answer divergence [29] as shown in Figure 15. We then calculate cosine similarity
between tasks using question features, image features, and fusion features, respectively, which are shown in Figure 16.
We observe that ConLSs have the highest image feature similarity between tasks, while ConVSs have the highest question
feature similarity between tasks, demonstrating the rationality of our splitting benchmarks. CL-VQA aims to maintain past
knowledge while learning new knowledge well, thus the more similar tasks and distribution will make the problem easier.
Therefore, from the perspective of similarity and divergence, we find ConVS is easier than ConLS and ConVLS, which is
consistent with our experimental results in Table 9 and Table 10 that methods perform better in ConVS than in other scenarios.

C. Algorithms for TRIPLET
The training and inference algorithms for TRIPLET are illustrated in Algorithm 1 and 2, respectively.



Algorithm 1 TRIPLET during training

1: Input: Pre-trained vision-language backbone with vision encoder VT, textual encoder TT and fusion encoder FT,
classifiers {gϕ}Tt=1, number of tasks T , training data set {Dt = {(vt

i, q
t
i, y

t
i)}nt

i=1}Tt=1, decoupled prompts P (m) =

{G(m)
k }⋃{E(m)

t,k}Tt=1, task keys U (m) = {u(m)
t }Tt=1, G-prompts attaching layer list KG, E-prompts attaching layer list

KE , query function fQ, modality interaction function fmi with interaction matrix W (m) = {W (m)
t }Tt=1, task interaction

function fti, number of training batches {Mt}, m ∈ {v, q, f}
2: Initialize: ϕ, P (m), U (m),W (m), m ∈ {v, q, f}
3: for t = 1, . . . , T do
4: Select decoupled prompts P (m)

t and task keys U (m)
t

5: Attach P
(m)
t to MSA layers in KG and KE to assemble the prompted architecture

6: for batch = 1, . . . ,Mt do
7: Draw a mini-batch B = {(vti , qti , yti)}li=1 ⊂ Dt

8: Calculate the batch loss L(B) as a stochastic proxy of L(Dt) via Equ. (9)
9: Update ϕ, P (m), U (m),W (m) by backpropagation

10: Store W
(m)
t for the next task’s loss calculation

11: end for
12: end for

Algorithm 2 TRIPLET during inference

1: Given components: Frozen pre-trained vision-language backbone with vision encoder VT, textual encoder TT and fusion
encoder FT, trained classifiers {gϕ}Tt=1, number of task T , decoupled prompts P (m) = {G(m)

k }⋃{E(m)
t,k}Tt=1, task keys

U (m) = {u(m)
t }Tt=1, G-prompts attaching layer list KG, E-prompts attaching layer list KE , m ∈ {v, q, f}

2: Input: test example (v, q)
3: Generate query features Q(m) via Equ. (5)
4: Matching for the best indexes t(m) ∈ {t(v), t(q), t(f)} via argmaxt(m) γ

(
u
(m)

t(m)
, Q(m)

)
5: Select the corresponding task-specific prompts E(m)

t(m)
, forming corresponding decoupled prompts P (m)

t(m)

6: Attach P
(m)
t to MSA layers in KG and KE to assemble the prompted architecture

7: Select corresponding classifiers gt(m) for prediction via Equ. (2)

Task 1 Task 2 Task 3 Task 4 Task 5
Figure 8: Example image in each task of ConVS CL-TDIUC.

Task 1 Task 2 Task 3 Task 4 Task 5

Figure 9: Word Cloud for top20 answers based on the answer frequency on CL-TDIUC ConLS.



Table 13: Representative questions in each task for ConLS in CL-TDIUC.

Task Representative Questions

Query-Color
What color is the center of the train?

What describing the color of the zebras mane what is it?

Scene-Recognition
Is this indoor or outdoor?

What is the weather like at this ski resort?

Object-Recognition
What cutlery piece is in the photo?

What vehicle is on the street next to the tree?

Counting
How many planes are in the picture?

How many people are sitting down in this picture?

Positional-Reasoning
What is behind the in the picture suitcase?

What fruit is to the right of the fruit with the face?

Table 14: Selected image categories and question types for ConVLS in CL-TDIUC.

Task Selected Image Category Selected Question Types

Group 1 Indoor Activity
Sentiment-Understanding, Attribute, Positional-Reasoning, Utility-Affordance

Sport-Recognition, Object-Recognition

Group 2 Food
Attribute, Positional-Reasoning, Utility-Affordance, Sport-Recognition

Object-Recognition, Scene-Recognition, Activity-Recognition

Group 3 Outdoor Activity
Positional-Reasoning, Utility-Affordance, Sport-Recognition, Object-Recognition

Object-Presence, Scene-Recognition, Activity-Recognition

Group 4 Traffic
Utility-Affordance, Sport-Recognition, Object-Recognition, Counting

Object-Presence, Scene-Recognition, Activity-Recognition

Group 5 Animal
Sport-Recognition, Object-Recognition, Counting, Color

Object-Presence, Scene-Recognition, Activity-Recognition

Table 15: Detailed statistics for CL-TDIUC.

Scenario Task Train Test Classes

ConVS

Indoor Activity 99,276 48,279 671
Food 127,766 61,319 668

Outdoor Activity 66,760 31,458 513
Traffic 116,964 56,143 750
Animal 119,314 57,502 696

ConLS

Query-Color 133,074 62,490 16
Scene-Recognition 44,674 22,032 71
Object-Recognition 62,862 30,693 281

Counting 111,857 52,905 16
Positional-Reasoning 26,042 12,284 965

ConVLS

Group1 17,717 8,617 623
Group2 35,421 17,037 646
Group3 39,127 18,494 418
Group4 44,478 21,785 176
Group5 43,521 21,273 192



Table 16: Object categories in each hyper-category for ConVS in CL-VQA2.0.

Task Object Categories

Group 1
carrot, fork, microwave, remote, dining table, stop sign, bus, pizza, mouse, suitcase,

banana, skis, baseball bat, sink, skateboard, bed

Group 2
airplane, cake, motorcycle, umbrella, couch, tennis racket, oven, refrigerator, train, truck

potted plant, car, boat, tv, toaster, zebra

Group 3
donut, cat, person, hair drier, surfboard, laptop, parking meter, bowl, bottle, vase

cell phone, cup, snowboard, bird, elephant, traffic light

Group 4
sheep, bench, spoon, tie, backpack, kite, horse, toothbrush, sports ball, chair

book, orange, cow, toilet, clock, sandwich

Group 5
frisbee, bear, broccoli, baseball glove, teddy bear, handbag, knife, scissors, apple, giraffe

keyboard, fire hydrant, dog, wine glass, bicycle, hot dog

Table 17: Representative questions in each task for ConLS in CL-VQA2.0.

Task Representative Questions

Counting
How many people are standing up in the boat?

How many boats are in the water?

Query-Color
What color is the customer’s shirt?

What colors make the checkerboard pattern on his shirt?

Action
What does the man have over his head?

What are these men wearing on their bodies?

Subcategory
What kind of juice is made with this fruit?

What type of filling is in the dish on the bottom left?

Query-Scene
Are the lights on in the building?

Is there a handicap sign near the smoker’s area?

Table 18: Detailed statistics for CL-VQA2.0.

Scenario Task Train Test Classes

ConVS

Group1 10,093 4,962 1,548
Group2 28,031 13,125 2,809
Group3 38,875 19,914 3,281
Group4 22,711 11,428 2,296
Group5 17,846 8,507 1,633

ConLS

Counting 48,506 23,261 123
Query-Color 43,166 21,559 572
Subcategory 27,743 13,564 3,749

Query-Action 41,653 19,712 500
Query-Scene 62,952 30,310 100

ConVLS

Group1 8,871 4,406 63
Group2 8,142 4,249 206
Group3 5,552 2,745 1,004
Group4 6,138 2,965 288
Group5 6,687 3,248 57



Task 1 Task 2 Task 3 Task 4 Task 5

Figure 10: Word Cloud for top20 answers based on the answer frequency on CL-TDIUC ConVS.
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Figure 11: Word Cloud for top20 answers based on the answer frequency on CL-TDIUC ConVLS.
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Figure 12: Word Cloud for top20 answers based on the answer frequency on CL-VQA2.0 ConLS.
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Figure 13: Word Cloud for top20 answers based on the answer frequency on CL-VQA2.0 ConVS.
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Figure 14: Word Cloud for top20 answers based on the answer frequency on CL-VQA2.0 ConVLS.
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Figure 15: Divergence of answer distributions between different tasks for CL-VQA2.0 and CL-TDIUC. The darker the color,
the greater the divergence.
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Figure 16: Task similarities for scenarios in CL-VQA2.0 and CL-TDIUC. The darker the color, the lower the similarity. The
heatmaps on the top line use language features (question features) to calculate similarity, the heatmaps on the second line use
vision features (image features) to calculate similarity, and the heatmaps on the bottom line use multi-modal features (fusion
features) to calculate similarity.


